

Is Now Part of

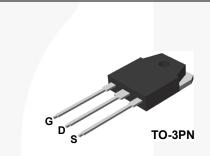
ON Semiconductor®

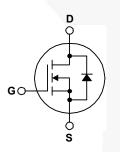
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

SEMICONDUCTOR

December 2013


FQA13N50C_F109 N-Channel QFET[®] MOSFET 500 V, 13.5 A, 480 mΩ


Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology.

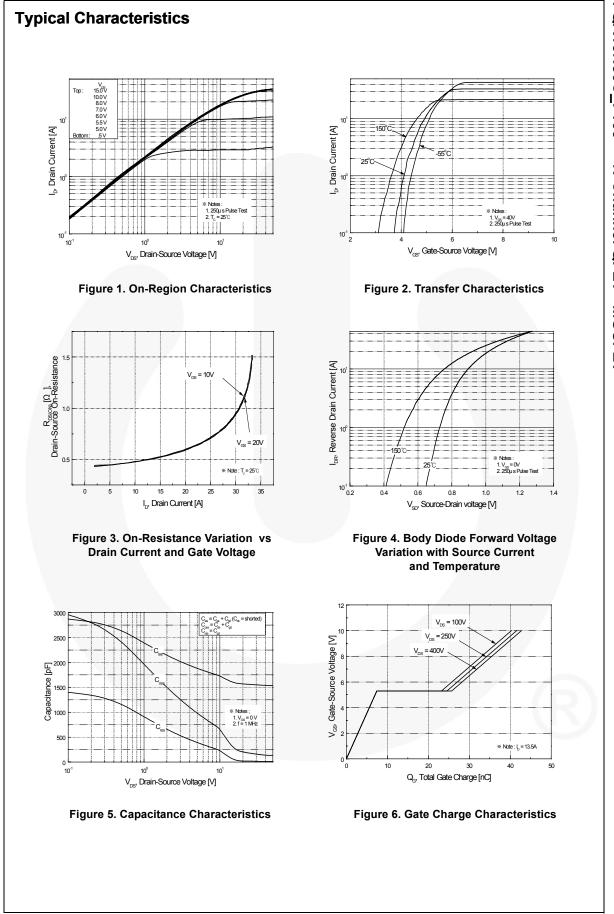
Features

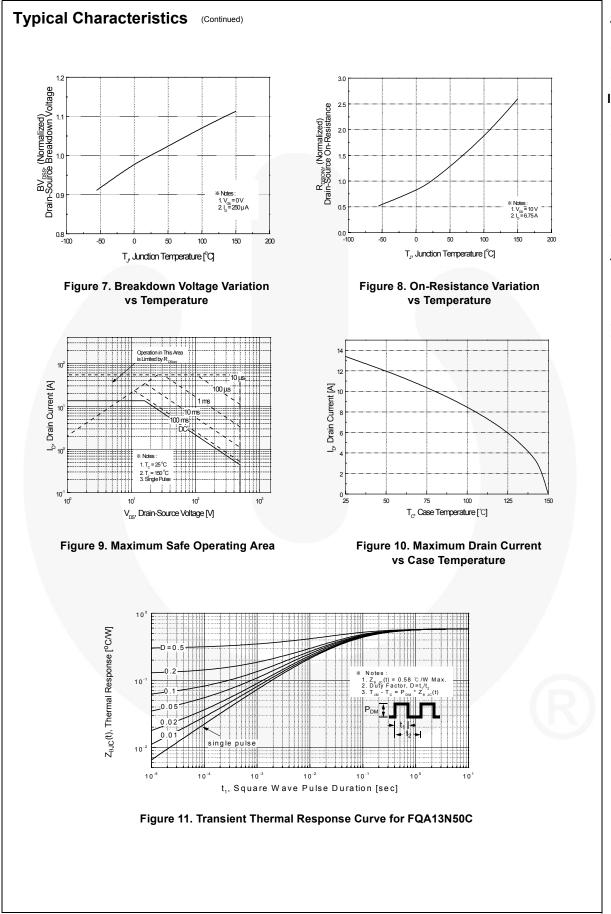
- 13.5 A, 500 V, R_{DS(on)} = 480 m Ω (Max.) @ V_{GS} = 10 V, I_D = 6.75 A
- Low Gate Charge (Typ. 43 nC)
- Low Crss (Typ. 20 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability

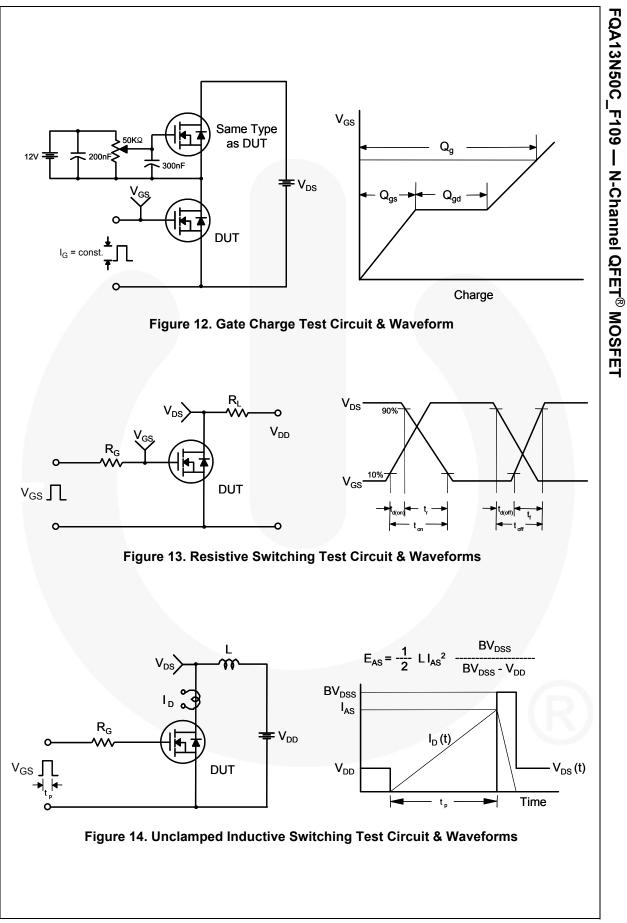
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

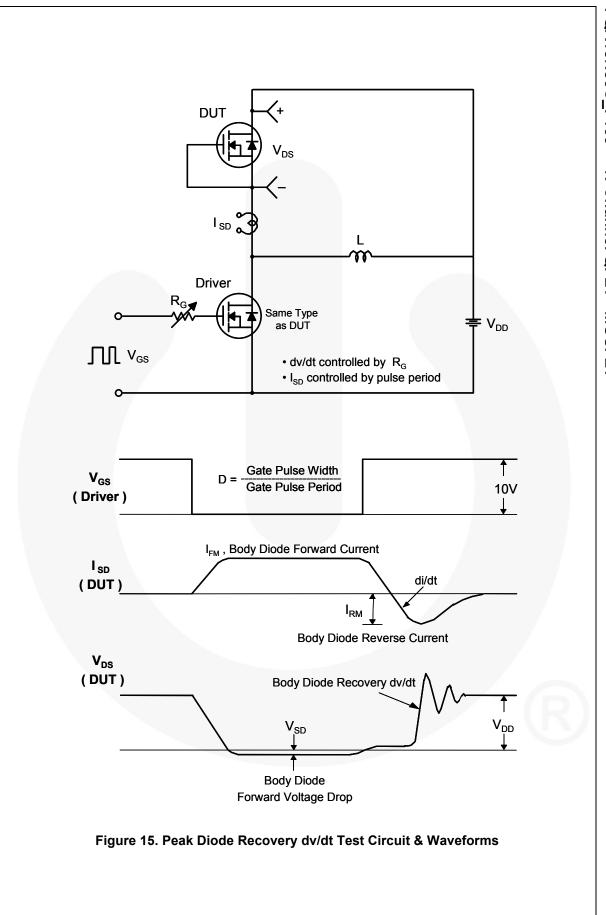
Symbol	Parameter		FQA13N50C_F109	Unit
V _{DSS}	Drain-Source Voltage	500	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		13.5	A
	- Continuous (T _C = 100°C)		8.5	A
I _{DM}	Drain Current - Pulsed	(Note 1)	54	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	860	mJ
I _{AR}	Avalanche Current	(Note 1)	13.5	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	21.8	mJ
dv/dt	Peak Diode Recovery dv/dt (No		4.5	V/ns
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		218	W
	- Derate above 25°C	1.56	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds.		300	°C

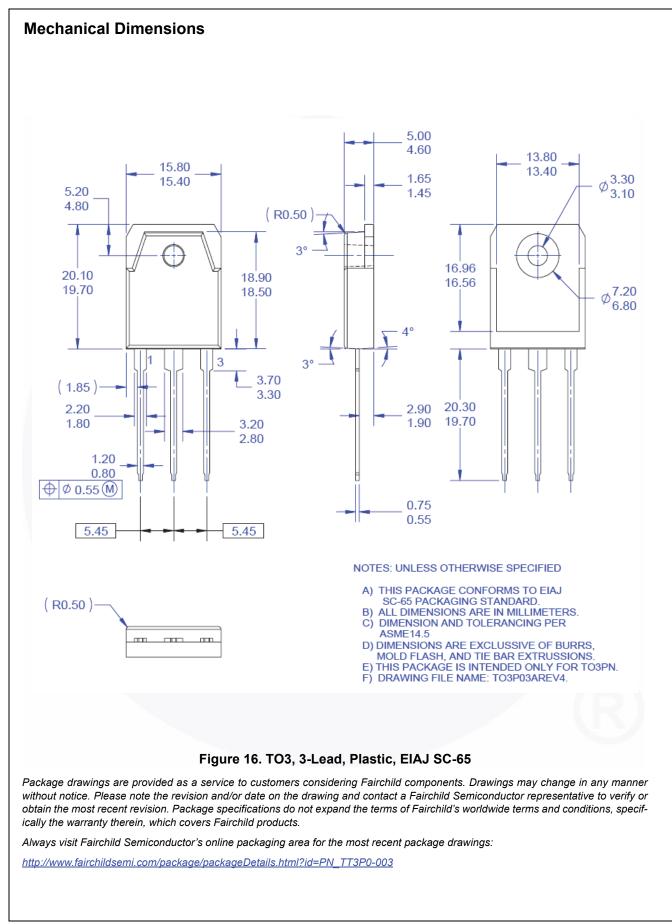
Thermal Characteristics


Symbol	Parameter	FQA13N50C_F109	Unit °C/W	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.58		
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W	


Part Number FQA13N50C_F109			Package	Packing Method	Reel	Reel Size		/idth	Quantity 30 units
			TO-3PN	Tube	N/	'A	N/A		
Electri	cal Chara	acteristics _{Tc}	= 25°C unless othe	erwise noted.					
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Unit
Off Cha	aracteristic	s							
BV _{DSS}		e Breakdown Voltage	$V_{GS} = 0$	V _{GS} = 0 V, I _D = 250 μA					V
ΔBV _{DSS}		Voltage Temperature							
$/\Delta T_{J}$	Coefficient		$I_{\rm D} = 250$	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$			0.5		V/°C
I _{DSS}	Zara Cata V			V _{DS} = 500 V, V _{GS} = 0 V				1	μA
	Zero Gate Voltage Drain Current		V _{DS} = 4	V _{DS} = 400 V, T _C = 125°C				10	μA
I _{GSSF}	Gate-Body I	_eakage Current, Forw	ard V _{GS} = 3	80 V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body I	_eakage Current, Reve	rse V _{GS} = -	30 V, V _{DS} = 0 V			I	-100	nA
On Cha	racteristic	s							
V _{GS(th)}	Gate Thresh		V _{DS} = V	/ _{GS} , I _D = 250 μA		2.0		4.0	V
R _{DS(on)}	Static Drain- On-Resistar	Source		0 V, I _D = 6.75 A			0.39	0.48	Ω
9 _{FS}		insconductance	V _{DS} = 4	0 V, I _D = 6.75 A	-		15		S
Dynam C _{iss} C _{oss}	ic Charact Input Capac Output Capa	itance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			1580 180	2055 235	pF pF
C _{rss}		Insfer Capacitance	1 1.01	1112			20	25	pF
	ing Charac	-							
t _{d(on)}	Turn-On De	lay Time	Vpp = 2	V _{DD} = 250 V, I _D = 13.5 A,			25	60	ns
t _r	Turn-On Ris	e Time	$R_{\rm G} = 25$	-			100	210	ns
t _{d(off)}	Turn-Off De	lay Time	Ŭ				130	270	ns
t _f	Turn-Off Fal	I Time		(Note 4)		100	210	ns
Qg	Total Gate C	ů.		00 V, I _D = 13.5 A,			43	56	nC
Q _{gs}	Gate-Source	e Charge	V _{GS} = 1	0 V			7.5		nC
Q _{gd}	Gate-Drain	Charge		(Note 4)		18.5		nC
Drain-S	ource Dio	de Characteristic	s and Maxi	imum Ratinos					
I _S	Maximum Continuous Drain-Source Diode Forward Current					13	Α		
I _{SM}	Maximum P	ulsed Drain-Source Die	de Forward C	urrent				52	А
V _{SD}	Drain-Sourc	e Diode Forward Volta	ge V _{GS} = C) V, I _S = 13.5 A				1.4	V
	Boyoraa Bo	covery Time	$V_{ab} = 0$) V, I _S = 13.5 A,			410		ns
t _{rr}	Reverse Re		v _{GS} – u	, v, ig – 15.5 A,			410		


Notes:


1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 5.6 mH, I_{AS} = 13.5 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} ≤ 13.5 A, di/dt ≤ 200 A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C. 4. Essentially independent of operating temperature


FQA13N50C_F109 — N-Channel QFET[®] MOSFET

N-Channel QFET[®] MOSFE

No Identification Needed

Obsolete

Full Production

Not In Production

Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC