

Technical Note

LVDS Interface ICs 4bit LVDS Transceiver

BU90LV049A

No.09057EAT01

Description

LVDS Interface IC of ROHM "Serializer" "Deserializer" operate from 8MHz to 150MHz wide clock range, and number of bits range is from 35 to 70. Data is transmitted seven times (7X) stream and reduce cable number by 3(1/3) or less. The ROHM's LVDS has low swing mode to be able to expect further low EMI.

Driver and Receiver of 4 bits operate to 250MHz. It can be used for a variety of purposes, home appliances such as LCD-TV, business machines such as decoders, instruments, and medical equipment.

Features

- 1) >500 Mbps (250 MHz) switching rates
- 2) Flow-through pinout simplifies PCB layout.
- 3) 400 ps typical driver channel-to-channel skew
- 4) 150 ps typical receiver channel-to-channel skew
- 5) 3.3V single power supply design
- 6) ± 200 mV and ± 350 mV selectable differential signaling (driver)
- 7) 6mA and 8mA selectable output drive strength (receiver)
- 8) 3-STATE output control
- 9) Internal fail-safe biasing of receiver inputs
- 10) High impedance on LVDS outputs on power down
- 11) Conforms to TIA/EIA-644-A LVDS Standard
- 12) Industrial operating temperature range (-40°C to +85°C)

Applications

Car Navigation System Copier Digital TV (Signal System) FA equipment Medical equipment Vending machine, Ticket vending machine

Precaution

This chip is not designed to protect from radioactivity.

•Absolute maximum ratings

ltem	Symbol	Valı	le	Unit
item	Symbol	Min.	Max.	Unit
Supply voltage	V _{cc}	-0.3	4.0	V
Input voltage	V _{IN}	-0.3	V _{CC} +0.3	V
Output voltage	V _{OUT}	-0.3	V _{CC} +0.3	V
Storage temperature range	Tstg	-55	150	°C

Package Power

Package	PD(mW)	DERATING(mW/°C) ※1
SSOP-B16	400	4.0
	450 ^{*2}	4.5 ^{*2}

‰1 At temperature Ta $> 25^{\circ}$ C

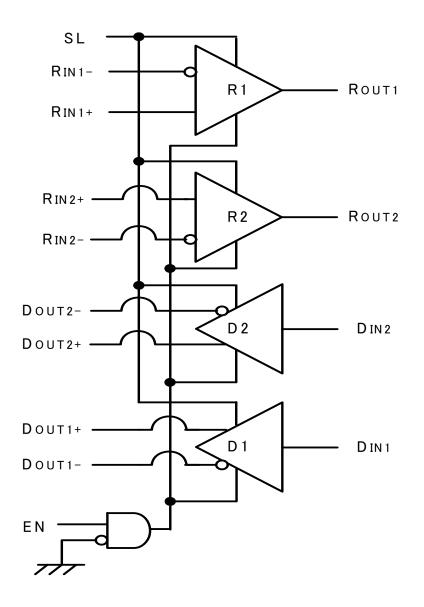
 $\bigstar 2$ Package power when mounting on the PCB board.

The size of PCB board $:70 \times 70 \times 1.6 \text{ (mm}^3)$

The material of PCB board :The FR4 glass epoxy board.(3% or less copper foil area)

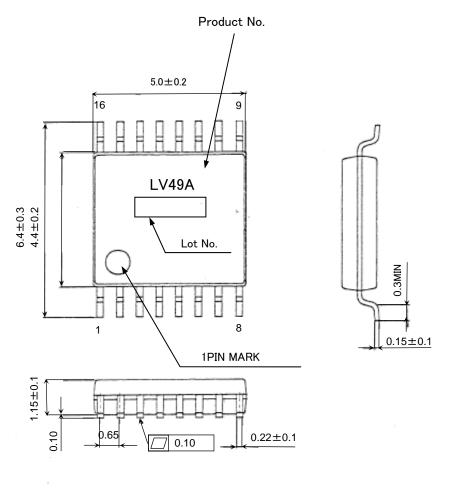
Operating conditions

ltom	Symbol		Value		Unit	Condition
Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply voltage	Vcc	3.0	3.3	3.6	V	
Operating temperature range	Topr	-40	25	85	°C	


•Electrical characteristics

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
	S Input DC Specification (Driver	Inputs, ENABLE Pins)					
V _{IH}	Input High Voltage			$V_{\rm cc} \times 0.8$	-	V _{cc}	V
V _{IL}	Input Low Voltage		D_{IN}	GND	-	$V_{cc} \times 0.2$	V
I	Input Current	$V_{IN} = 0V$ or V_{CC}	EN SL	-10	-	+10	μA
V _{CL}	Input Clamp Voltage	V _{cL} = −18mA		-1.5	-0.8	-	V
LVDS O	utput DC Specification (Driver O	utput)					
V _{od1}	Differential Output Voltage	SL= GND, $R_L = 100 \Omega$ (Figure 4)	D _{OUT-}	250	350	450	mV
V _{OD2}	Differential Output Voltage	SL= V_{cc} , R_{L} = 100 Ω (Figure 4)	D _{OUT+}	120	200	300	mV
ΔV_{od}	Change in Magnitude of V _{oD} for Complementary Output States			-	1	35	mV
V _{os}	Offset Voltage	SL = V_{cc} or GND, R _L = 100 Ω (Figure 4)		1.125	1.25	1.375	V
ΔV_{os}	Change in Magnitude of Vos for Complementary Output States			-	1	25	mV
I _{os}	Output Short Circuit Current	ENABLED, $D_{IN} = V_{CC}, D_{OUT+} = 0V \text{ or}$ $D_{IN} = GND, D_{OUT-} = 0V$		-	-5.4	-9.0	mA
I _{osd}	Differential Output Short Circuit Current	ENABLED, V _{OD} = 0V		-	-5.4	-9.0	mA
I _{oz}	Output 3-STATE Current	EN = 0V and SL = V _{cc} V _{out} = 0V or V _{cc}		-10	1	+10	μA
LVDS In	put DC Specification (Receiver I	nputs)					
V_{TH}	Differential Input High Threshold	V _{CM} = 1.2V, 0.05V, 2.35V	R_{IN^+}	-	-	100	mV
V_{TL}	Differential Input Low Threshold		R_{IN^-}	-100	_	-	mV
V_{CMR}	Common-Mode Voltage Range	V _{ID} = 200mV pk to pk		0.1	-	2.3	V
I _{IN}	Input Current	V _{IN} = 0 or Vcc		-20	I	+20	μA
LVCMO	S Output DC Specification (Rece	iver Outputs)					
V _{OH1}	Output High Voltage	$I_{OH} = -8 \text{ mA}, V_{ID} = +200 \text{ mV},$ SL=GND		V _{cc} - 0.4	-	_	V
V _{OH2}	Output High Voltage	I_{OH} = -6 mA, V_{ID} = +200 mV, SL = V_{CC}		V _{cc} - 0.4	-	-	
V _{OL1}	Output Low Voltage	I_{OL} = 8 mA, V_{ID} = -200 mV, SL=GND	R _{out}	-	_	0.4	V
V _{OL2}	Output Low Voltage	$I_{OL} = 6 \text{ mA}, V_{ID} = -200 \text{ mV},$ SL = V _{CC}	1	-	-	0.4	
I _{oz}	Output 3-STATE Current	Disabled, V _{out} = 0V or V _{cc}	1	-10	1	+10	μA
General	DC Specifications						
I _{cc}	Power Supply Current	EN = Vcc and SL = 0V	- V _{cc}	-	12	-	mA
I _{ccz}	TRI-State Supply Current	EN = 0V and SL = 0V	• cc	-	2	-	mA

•Switching Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVDS Out	puts (Driver Outputs)	-				
t _{PHLD}	Differential Propagation Delay High to Low	$R_L = 100 \Omega$, $C_L = 15 pF$	0.5	1.7	2.8	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 5 and Figure 6)	0.5	1.7	2.8	ns
t _{skD1}	Differential Pulse Skew t _{PHLD} - t _{PLHD}		0	0.3	0.4	ns
t _{SKD2}	Differential Channel-to-Channel Skew		0	0.4	0.5	ns
t _{SKD3}	Differential Part to Part Skew		0	-	1.0	ns
t _{TLH}	Rise Time		-	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 100 \Omega$, $C_L = 15 pF$	-	2	5	ns
t _{PLZ}	Disable Time Low to Z	(Figure 7 and Figure8)	-	2	5	ns
t _{PZH}	Enable Time Z to High		-	3	7	ns
t _{PZL}	Enable Time Z to Low		-	3	7	ns
f _{Max}	Maximum Operating Frequency		250	-	-	MHz
LVCMOS	Outputs (Receiver Outputs)	-				
t _{PHL}	Propagation Delay High to Low	$C_L = 15pF$ $V_{ID} = 200mV$	1.2	2.0	3.7	ns
t _{PLH}	Propagation Delay Low to High	(Figure 9 and Figure 10)	1.2	1.9	3.7	ns
t _{sK1}	Pulse Skew t _{PHLD} - t _{PLHD}		0	0.1	0.4	ns
t _{sk2}	Channel-to-Channel Skew		0	0.15	0.5	ns
t _{sk3}	Part to Part Skew		-	-	1.0	ns
t _{TLH}	Rise Time		_	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 2k \Omega$	-	8	14	ns
t _{PLZ}	Disable Time Low to Z	$C_L = 15pF$	-	8	14	ns
t _{PZH}	Enable Time Z to High	(Figure 11 and Figure 12)	-	3	14	ns
t _{PZL}	Enable Time Z to Low		-	9	14	ns
f _{Max}	Maximum Operating Frequency		250	-	-	MHz

Block diagram

SSOP-B16 Package Outline and Specification

(UNIT : mm)

Figure 2. SSOP-B16 Package Outline and Specification

Pin Configuration

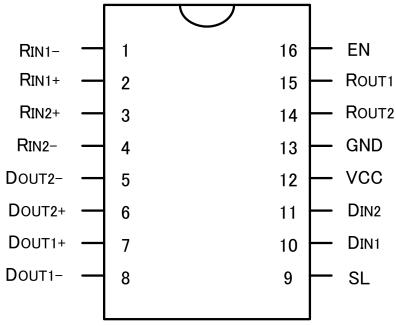


Figure 3. Pin Diagram (Top View)

Pin Description

Pin Name	Pin No.	Туре	Descriptions
DIN	10, 11	LVCMOS In	Driver input pin, LVCMOS levels.
DOUT+	6, 7	LVDS Out	Non-inverting driver output pin, LVDS levels.
DOUT-	5, 8	LVDS Out	Inverting driver output pin, LVDS levels.
RIN+	2, 3	LVDS In	Non-inverting receiver input pin, LVDS levels.
RIN-	1, 4	LVDS In	Inverting receiver input pin, LVDS levels.
ROUT	14, 15	LVCMOS Out	Receiver output pin, LVCMOS levels.
SL	9	LVCMOS In	Drive strength and Swing Level select pin : When SL is low or open, Rout set 8mA mode and the driver is normal swing level (350mV). When SL is high, Rout set 6mA mode and the driver is reduce swing level (200mV).
EN	16	LVCMOS In	Enable pin: When EN is Low or open, the receiver and driver are disabled. When EN is high, the receiver and driver are enabled.
VCC	12	Power	Power supply pin, +3.3V \pm 0.3V.
GND	13	GND	Ground pin.

Function Description

Driver Truth Table

		INPUT	OUTF	PUTS	SwingLoval
EN	SL	Din	Dout+	Dout-	Swing Level
н	L or Open	L L H 350mV			
	L	330117			
н	Ц	L	L	Н	200mV
	н	Н	H	L	200111
All other com EN, SL		Х	Z	Z	

■Receiver Truth Table

		INPUT	OUTPUTS	Drive
EN	SL	$R_{IN+} - R_{IN-}$	R _{OUT}	Strength
		$VID \ge 0V$	Н	
		VID ≤ −0.1V	L	
Н	L or Open	Full Fail-safe OPEN/SHORT or Terminated	Н	8mA
		$VID \ge 0V$	Н	
		$VID \leq -0.1V$	L	
Н	Н	Full Fail-safe OPEN/SHORT or Terminated	Н	6mA
All other com EN, SL		Х	Z	

Parameter Measurement Information

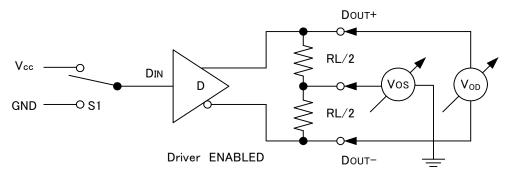


Figure 4. Driver VOD and VOS Test Circuit

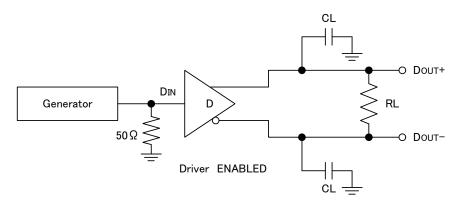


Figure 5. Driver Propagation Delay and Transition Time Test Circuit

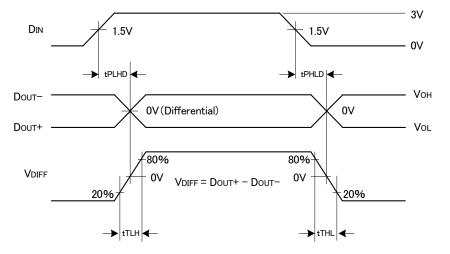


Figure 6. Driver Propagation Delay and Transition Time Waveforms

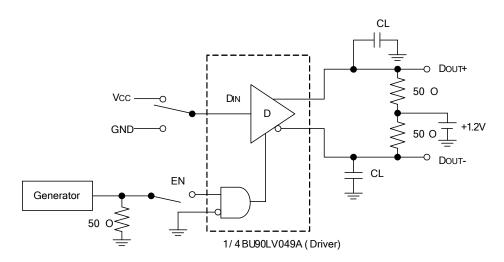


Figure 7. Driver 3-STATE Delay Test Circuit

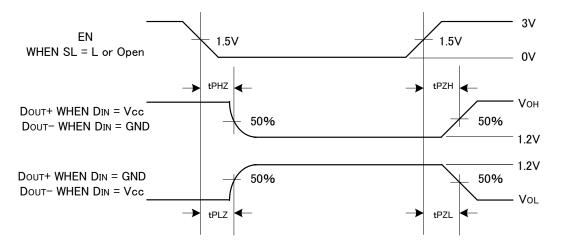


Figure 8. Driver 3-STATE Delay Waveform

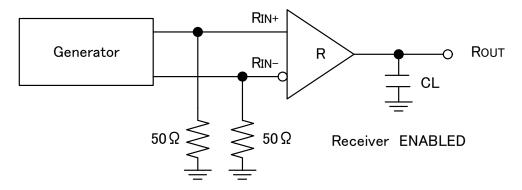


Figure 9. Receiver Propagation Delay and Transition Time Test Circuit

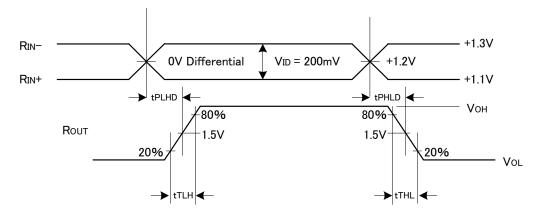


Figure 10. Receiver Propagation Delay and Transition Time Waveforms

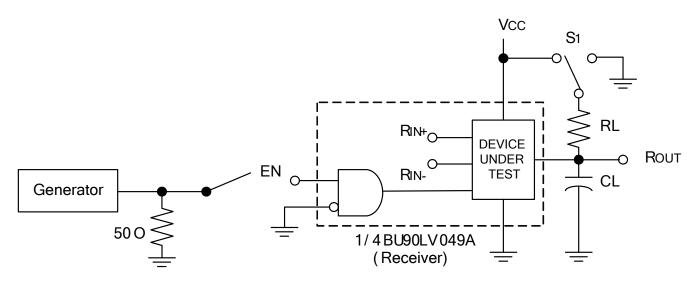


Figure 11. Receiver 3-STATE Delay Test Circuit

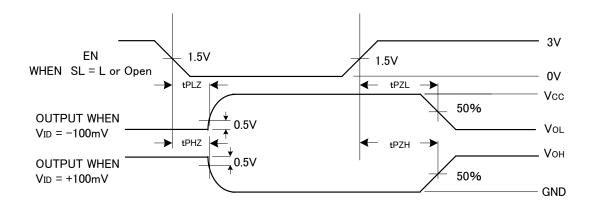
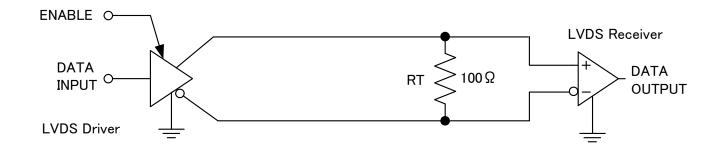
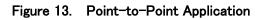
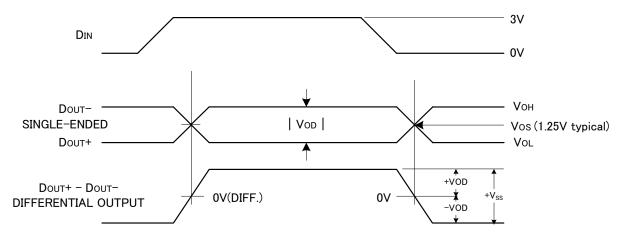
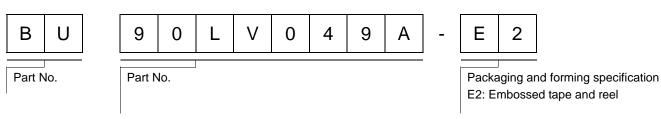
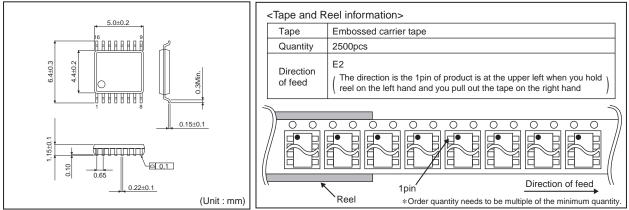




Figure 12. Receiver 3-STATE Delay Waveforms

•Typical Application


Figure 14. Driver Output Levels

BU90LV049A

Ordering part number

SSOP-B16

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conten	t specified herein is subject to change for improvement without notice.
"Products")	It specified herein is for the purpose of introducing ROHM's products (hereinafte b. If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein e standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However, s	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such , ROHM shall bear no responsibility for such damage.
examples of implicitly, a other partie	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o ny license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment	ets specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu vices, electronic appliances and amusement devices).
The Produc	ts specified in this document are not designed to be radiation tolerant.
	M always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of ar shall bear r	sure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the product, such as derating, redundancy, fire control and fail-safe designs. ROHM responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system whi may result instrument fuel-contro any of the F	cts are not designed or manufactured to be used with any equipment, device or ch requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller ller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for any al purpose, please contact a ROHM sales representative before purchasing.
be controlle	d to export or ship overseas any Product or technology specified herein that may ed under the Foreign Exchange and the Foreign Trade Law, you will be required to ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/